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Abstract

Scientific discourse is based on exchanging knowledge in the form of
stringent and well-arranged argumentations. Capturing the full variety
and flexibility of argumentations within a single knowledge repository
is close to impossible. Therefore, we have designed a narrative model
that, on the one hand, captures the key aspects of argumentations (en-
tities, events, relations, etc.), and on the other hand, is a logical overlay
on top of existing knowledge repositories. Hence, users may formulate
a narrative and validate its plausibility with data of different knowledge
repositories via narrative bindings. This paper describes and discusses
the computation of narrative bindings against three different types of
sources: the document collection PubMed, the knowledge graph Wiki-
data and the WHO data sets. We give insights into the computation
of narrative bindings and discuss open research questions.

1 Introduction into Narrative Models

The idea of discourse in science means to exchange knowledge in the form of stringent, well-arranged, and
interconnected arguments. Whether they are written or told, these argumentations come with a clear underlying
structure to make them logically sound and convincing. Capturing such full-fledged argumentation structures in
a comprehensive and structured fashion is still ongoing research, see e.g., [HG17, MM11].

On a purely representational level, the Resource Description Framework (RDF) recommends to encode and
share knowledge in the form of triples called facts [MMM+04]. Such facts are generally expected to be trustworthy
and always valid [KKN+20]. For instance, simple properties like persons’ names or birth dates can be used
without worrying about their validity. But indeed, sharing knowledge in arguments is more complicated than
just somehow connecting valid facts [HCF02]. For example, the conclusions of clinical trials are only valid within
the (often rather limited) scope of their surrounding argumentation, i.e., the trial’s context spans the scope of
the concluded piece of knowledge. When being restricted to encode knowledge as facts like in RDF, mapping
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Figure 1: Narratives as Logical Overlays on top of Knowledge Repositories [KNB20]

detailed and complex argumentation structures is hardly possible, cf. [Suc20] for a good overview. What makes
these structures so hard to catch?

Stripping argumentations down to their basic components, their backbone is formed by narrative relations
between arguments, i.e., narrative relations describe the temporal and causal structure between individual
arguments [HCF02, Tou58]. Disassembling such a comprehensive structure into reusable pieces remains a mostly
unsolved problem, since some arguments may only be valid if other arguments were made before. Instead of
focusing on the extraction and disassembly of argumentation structures, we argue for a logical overlay on top of
existing knowledge repositories. The basic idea is similar to peer-to-peer networks, where high-level structures
group the underlying IP-network in logical layers. That is why we have designed a formal narrative model,
published in [KNB20].

On the one hand, our narrative model allows the formulation of complex structures by featuring factual
knowledge, events, entities, actors, and narrative relations. On the other hand, the model is designed to be a
logical overlay on top of arbitrary knowledge repositories, see Fig. 1. We have designed narrative bindings
to bind parts of the narrative model against different sources. These narrative bindings give evidence for a
narrative’s relation by validating its plausibility with a knowledge repository’s data. So instead of integrating
different sources into a single one, we argue to bind the knowledge in a logical overlay for different applications.
We believe that each knowledge repository has its unique purpose and cannot be integrated without losing
information.

Hence, two questions must be answered: How can we model narrative structures? We have already discussed
this question in detail [KNB20]. The second question is yet open: Suppose a narrative model and a set of
knowledge repositories were given: How can we find suitable narrative bindings automatically or at least semi-
automatically? This paper gives an overview about the automatic computation of narrative bindings, answering
the previous question. We demonstrate and discuss how these bindings are computed against the document
collection PubMed, the knowledge graph Wikidata, and the WHO data sets (Global Health Observatory of the
WHO). We believe that narratives as logical overlays on top of existing knowledge repositories offer a novel way to
represent scientific discourse. Possible applications would range from hypothesis testing (formulate a hypothesis
as a narrative and test if narrative bindings exist) up to inferring new knowledge (infer new knowledge if a
narrative could be bound) [SWB+14].

2 Computing Narrative Bindings

Let us explain our narrative model by giving a biomedical example narrative: Aspirin is a drug that treats
headaches and can be administered as a tablet. In a patient’s treatment, aspirin is applied as a tablet to treat
headaches. This treatment leads to an observation of an adverse effect, namely the medical condition alicylate
toxicity. This little narrative is a scientific discourse about an adverse effect of an aspirin treatment. Let us
decompile this example narrative into smaller pieces: aspirin is a drug, headaches and alicylate toxicity are
diseases and tablet is a dosage form. We represent them as entities, i.e., biomedical concepts of interest. The
process of a patient’s treatment has some temporal component, i.e., it starts at some point in time and has a
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Figure 2: Example Narrative: Aspirin is a drug that treats headaches and may be administered as a tablet.
In a patient’s treatment, aspirin is administered as a tablet to treat headaches. The treatment leads to the
observation of an adverse effect, namely alicylate toxicity.

duration. The treatment involves the entities aspirin (applied drug), tablet (administered as) and headaches
(medical condition to treat). The patient’s treatment leads to an observation of an adverse effect that involves
the medical condition alicylate toxicity. Both, patient’s treatment and the observation of an adverse effect, are
events, i.e., they describe some expected states and may have a temporal component. The example narrative
might thus be interpreted by having some order, e.g., the treatment should happen before the adverse effect is
observed. The whole narrative is depicted in Fig. 2. We visualize entities as green nodes, events as blue nodes
and relations as directed-labeled edges between them. For this paper, we understand a narrative as a directed
edge-labeled graph with nodes and edges. We distinguish nodes into three different types: 1. entities represent
important and relevant concepts, 2. literals represent values like numeric expressions or strings, and 3. events
represent some states or state changes. Next, an edge represents the relationship between two different nodes, i.e.,
an edge might express some entity’s participation in an event or a relationship between entities and literals. We
divide relations into two different sets: factual relations between entities and literals, and narrative relations
between events and entities involved in events. Entities might here be seen as actors as well, i.e., a person might
be included in a factual relation but also in a narrative relation by participating in some event. However, the
terms entity and event might be very similar in a given scenario, e.g., an election might be understood as a)
the election process and modeled as an event, or b) just as an important concept and modeled as an entity.
We believe that such a decision depends on the specific use case. More details about our narrative model and
bindings may be found in our previous work [KNB20].

We have designed our narrative model to be as generalizable as possible, i.e., we do not restrict entities,
events, and relations. In our research, we formulate scientific discourses based on our model. But indeed, the
model might be applied in other scenarios as well. In this paper, we are interested in validating a narrative’s
plausibility. Therefore, we have designed the so-called narrative binding. A narrative binding binds a single
relation of a narrative against some knowledge repository. Suppose there is a binding between a relation and a
knowledge repository. In that case, we assume the relation to be plausible because we have found evidence for
it. For example, aspirin treats headaches might be bound against some scientific publication or the DrugBank
database [WFG+17]. Here, the corresponding binding validates the plausibility of the aspirin-headaches relation.
However, it should be noted that the binding just gives evidence for the plausibility. It might be possible that
a knowledge repository, especially when considering scientific publications, states wrong information against
which we compute a narrative binding. For this paper, we assume knowledge repositories to contain valid
knowledge. Subsequently, the main question remains open: How can we compute suitable narrative bindings
against different kinds of knowledge repositories? And especially, what are the challenges with this? The following
will describe how narrative bindings could be computed against three different sources, namely the document
collection PubMed [Nat21], the knowledge graph Wikidata [VK14] and the Global Health Observatory of the
WHO [Wor21]. Therefore, we describe the current state of our prototype and discuss open challenges. We
develop our prototype to assist biomedical researchers in their daily work, i.e., the prototype should validate
whether a biomedical discourse is plausible.



2.1 Bindings against PubMed

PubMed is the world’s most extensive biomedical library with more than 30 million assets (2020). Computing
narrative bindings against such an extensive collection requires efficient methods. On the one hand, information
retrieval methods may therefore be considered to find relevant information in a document’s text [CL96]. For
example, the Lucene project [Luc21] offers a variety of suitable methods like indexing, similarity measures, and
retrieval methods. On the other hand, converting unstructured text into structured information could also be
done to extract relevant information from text a-priori. For such a conversion, methods like entity linking,
information extraction, and more come into mind, see [WDRS20] for a good overview. For our prototype, we
apply a preprocessing step to convert document texts into an intermediate graph representation. These graph
representations will be queried later to compute narrative bindings. In the preprocessing phase, we apply an
entity linking and information extraction step to retrieve how entities are connected within the single texts. Entity
linking is done by utilizing and developing biomedical annotation tools and suitable vocabularies. Information
extraction is done by utilizing Natural Language Processing toolkits (like Stanford CoreNLP [MSB+14], Stanford
Stanza [QZZ+20] and OpenIE6 [KAA+20]). We build upon open information extraction to bypass the need for
training data. Our system cleans the heterogeneous output with entity-based filters and word embeddings. We
keep only information about documents containing relevant entity annotation and interactions between them.
We start by selecting the most relevant part of PubMed, i.e., all PubMed documents that contain information
about drugs. Our entity linking has detected drugs in around 5.6 million different documents. In the future, we
will incrementally increase the number of processed documents. Hence, the current prototype searches through
these 5.6 million documents for now and is currently evaluated by ten biomedical experts. The evaluation should
determine how good narrative bindings against scientific publications can answer their information needs. They
formulate their information need as short narratives, and the prototype retrieves suitable narrative bindings. In
detail, we analyze how good the annotation, extraction, cleaning, and retrieval performance is and how helpful
the bindings are for their use cases. For example, aspirin treats headaches in patients could be bound against
publications that support aspirin treats headaches and aspirin treats patients. In extension to that, we plan to
implement support for literal and event annotation. Literals like numeric expressions or dates could be found via
regular expressions, e.g., applied dosages or time information. Finding arbitrary events requires either designing
pre-known vocabularies (think about pharmaceutical methods) or utilizing the latest retrieval methods. Here, we
may consider methods like exploring entity-centric events [SG18] or event summarization [SG16]. We currently
analyze whether the latest textual entailment methods could help estimate whether a relation involving events
and entities is mentioned within a paragraph [LOG+19]. Given a relation between an event and an entity, we
estimate which paragraphs contain the information and send the paragraph plus the relation to a language model
for textual entailment to make the decision. This approach will be further evaluated to enhance the retrieval
quality for narrative bindings against document collections.

2.2 Bindings against Wikidata

Knowledge graphs are well-suited for the storage of factual knowledge about entities. That is why we develop
a component to compute narrative bindings against Wikidata (WD), a large, high-quality open knowledge
graph [VK14]. Wikidata is known to cover knowledge in many domains and hence, is a good candidate to
validate arbitrary narratives. Besides, Wikidata includes mappings between several vocabularies, e.g., the WD
entity aspirin(Q18216) could easily be translated to the DrugBank identifier DB00945. Then, more relevant
information could be retrieved from DrugBank. Given a narrative, we obtain all labels from entities, literals,
and the relationships between them. These labels are not restricted to knowledge graph resource identifiers.
Accordingly, we perform an entity linking against all WD entities and relations through their (English) labels
and synonyms in an inverted index. We mark relations as factual if a match is found. Once the initial entity
linking step is done, finding narrative bindings for narrative components with factual relations is straightforward.
For every combination of subject, relation, and object, we execute a SPARQL query to check if a fact is present on
WD and obtain narrative bindings. Homonymous entity and relation names require some disambiguation when
linking. We deal with homonyms by evaluating more than one match. On the one hand, it is likely that SPARQL
queries will not find matches for erroneously linked entities and relations. On the other hand, the user can easily
resolve false positives when bindings are shown and explained by the WD entities’ description. When one or more
narrative bindings were found, we may use so-called qualifiers to provide evidence about a fact’s validity. Wikidata
introduces these qualifiers to attach provenance information to facts [HHK15, Wik21]. For example, aspirin is
a medication could be bound against the WD fact aspirin(Q18216), instance of (P31), medication(Q12140),



attached with the qualifier linking the fact to its source. Here, the qualifier would reveal that the information
was gathered from DrugBank. On the one hand, computing narrative bindings against a knowledge graph might
be straightforward. On the other hand, a practical knowledge graph might come with various heterogeneity
issues, i.e., duplicated entity entries, synonymous relationships, and missing information [KFEB20]. However,
modern methods like KnowlyBERT propose to utilize modern neural language models to bypass some of these
issues [KFEB20].

2.3 Bindings against Scientific Data

Large-scale data sets store experimental and statistical information. Contrary to structured knowledge graphs,
simple data sets usually vary in many different ways, from the formatting of the data to the availability of de-
scriptive meta-information. The heterogeneity of data sets makes computing bindings against them a challenging
task [BCN20, BBN19]. Our first approach is therefore restricted to data sets that, on the one hand, store their
information in a relational fashion, and on the other hand, also provide meta-data describing their individual
columns. In order to compute a narrative binding between a narrative and a data set, we propose a two-step
matching algorithm: 1. Computation of a meta-data-alignment to recognize which data set entries contain de-
scriptive information about the narrative’s nodes (entities and events). 2. Estimating whether the actual data
justifies the narrative’s relations between the aligned nodes. Hence, nodes are linked to columns and relations
are expressed by the dependencies between the columns’ values. For example, the WHO database [Wor21] has
information about cholesterol levels and the prevalence of diseases. Hence, we may compute a binding between
a narrative’s relation like cardiovascular diseases are caused by high cholesterol levels and the WHO database.
Hence, a binding against a data set can give evidence for a narrative’s causal relation. Estimating causation is
a difficult task, and for now, we build upon simple correlation metrics, e.g., the Pearson correlation coefficient.
We utilize causality metrics such as relative risk [KBAP78], which have been established throughout clinical
studies to minimize errors and remove confounders. Detecting causality is a challenging research area on its
own [SBMU00]. Another application of such bindings can be seen in a semi-automated computation of narrative
explanations for data sets, similar to the task of data visualization [SH10]. In practice, the heterogeneity of data
sets can be a major issue for the computation of narrative bindings. Brickley et al. argue that data sets are
published in different domains, have different structures and do not always provide useful metadata [BBN19].
Hence, the automatic understanding and analysis of data sets remains a hard challenge due to this heterogeneity.
In the future, we will investigate methods tackling such problems in practice.

3 Discussion

In summary, we have developed our prototype to compute narrative bindings automatically. First, the kind of
relation (factual or narrative) does not determine a knowledge repository’s type. Evidence for factual information
might be found in knowledge graphs. However, it could also be bound against a scientific publication or a data
set. Second, computing narrative bindings requires browsing through extensive collections of knowledge. For
example, if users want to test a hypothesis in an online-fashion, such a system must be responsive. Combining
smart index techniques with the latest natural language methods seems promising here. The next step is to
understand how useful a logical overlay is in real-world applications like hypothesis testing or inferring new
knowledge [SWB+14]. Testing a hypothesis could be done by formulating it as a narrative and searching for
suitable narrative bindings as evidence. If the narrative could be bound, it might be likely that the hypothesis
is valid. Inferring new knowledge can be done by introducing variables as narrative nodes. Here, we might
utilize our example narrative by replacing the alicylate toxicity by a variable ?diseases. We can infer more side
effects of an aspirin treatment when we find a suitable substitution for that variable by finding bindings for a
corresponding narrative. Our current retrieval prototype for PubMed can search through 5.6 million documents
in nearly real-time and is under evaluation by ten biomedical domain experts. Already performed interviews
and a first questionnaire indicate the prototype’s usefulness for testing new hypotheses by retrieving precise
document hits as bindings. We plan to enhance the prototype by integrating more knowledge repositories and
featuring retrieval with events. The first techniques to compute bindings against knowledge graphs and data
sets are currently under development and will be evaluated further.

Although our model comes with advantages, many questions are still not solved yet. How good is the quality
of narrative bindings? Natural language processing methods are known to be error-prone due to the high
complexity of natural language [WDRS20]. Practical knowledge graphs still have heterogeneity issues that may
lead to false bindings [KFEB20]. Even worse, the fully-automatic understanding of a data set’s structure is close



to impossible. And even if all of these problems would be solved, the next question is: How can we ensure
that the narrative bindings feature a similar context? Computing bindings for a single narrative against several
sources facilitates the need for context-compatibility [KKN+20], e.g., experimental data of mouse treatments
should not be combined with humans’ clinical trial data. In this case, it might be sufficient to check whether
the treatments’ target groups are identical. However, depending on concrete use cases, such decisions might get
more complicated, e.g., pre-existing conditions, doses and more.

All these questions are hard-to-answer if we think about bottom-up methods, i.e., extracting all causations
from a data set or the argumentation structure of some document [WDRS20]. Our model proposes a top-down
method, i.e., a user formulates the narrative she is looking for. If our system knows the narrative structure
already, retrieval methods should yield higher quality. Think about modern NLP methods here: extracting all
relations between arbitrary concepts in texts seems to be nearly impossible. But on the other hand, estimating
if a relation is mentioned within a small paragraph already achieves high quality [LOG+19]. For now, we have
built a retrieval prototype to compute narrative bindings against PubMed. We are currently working on the
integration of Wikidata and the WHO data sets. In the future, we will increase the quality of retrieval methods
and demonstrate the benefit of our narrative model for applications like hypothesis testing or inferring new
knowledge.
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